Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, a significant gap exists in the current understanding of the mechanical properties of MGs in relation to the atomic bond behavior and how this relationship is influenced by metallurgical factors (e.g., alloy composition, processing conditions). Here, we present our study of the compositional effects on the tensile behavior of atomic bonds in Cu93−xZrxAl7 (x = 40, 50, 60 at.%) MGs using large-scale molecular dynamics (MD) simulations and statistical analysis. Specifically, we examine the populations (fractions), mean bond lengths, mean bond z-lengths, and mean bond z-strains of the different bond types before and during tensile loading (in the z-direction), and we compare these quantities across the different alloy compositions. Among our key findings, we show that increasing the Zr content in the alloy composition leads to shortened Zr-Zr, Al-Cu, Al-Zr, and Cu-Zr bonds and elongated Cu-Cu bonds, as evidenced by their mean bond lengths. During deformation, the shorter Zr-Zr bonds and longer Cu-Cu bonds in the higher-Zr-content alloys, compared with those in the x = 40 alloy, appear stronger (more elastic stretching in the z-direction) and weaker (less z-stretching), respectively, consistent with general expectations. In contrast, the Al-Cu, Al-Zr, and Cu-Zr bonds in the higher-Zr-content alloys appear weaker in the elastic regime, despite their shortened mean bond lengths. This apparent paradox can be reconciled by considering the fractions of these bonds associated with icosahedral clusters, which are known to be more resistant to deformation than the rest of the glassy structure. We also discuss how the compositional effects on the bond behavior relate to variations in the overall stress–strain behavior of the different alloys.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Bulk nanostructured metals introduced by severe plastic deformation contain an excess of lattice defects. A nanostructured copper (Cu) processed by a high-pressure torsion technique was examined during in situ heating to investigate microstructural relaxation and quantify the evolution of microstructural parameters using high-energy synchrotron microbeam X-ray diffraction. While general microstructural relaxations, such as recovery, recrystallization, and subsequent grain growth, were observed, the key microstructural parameters, including grain size, microstrain, dislocation density, and thermal expansion coefficient, and their changes at critical temperatures were uniquely described and quantified through diffraction data. Based on this analysis, the stored energies driving thermally activated microstructural changes were estimated for individual defect types — grain boundaries, dislocations, and vacancies — that are expected to significantly influence the relaxation behavior of nanostructured Cu. This study demonstrates the effectiveness of diffraction characterization techniques for gaining a comprehensive understanding of the thermal stability of bulk nanostructured materials.more » « lessFree, publicly-accessible full text available May 15, 2026
-
Multicomponent metallic glasses (MGs) are a fascinating class of advanced alloys known for their exceptional properties such as limit-approaching strength, high hardness and corrosion resistance, and near-net-shape castability. One important question regarding these materials that remains unanswered is how the different elements and atomic bonds within them control their strength and deformability. Here, we present a detailed visual and statistical analysis of the behaviors of various elements and atomic bonds in the Zr47Cu46Al7 (at%) MG during a uniaxial tensile test (in the z-direction) simulated using molecular dynamics. Specifically, we investigate the identities of atoms undergoing significant shear strain, and the averaged bond lengths, projected z-lengths, and z-angles (angles with respect to the z-direction) of all the atomic bonds as functions of increasing strain. We show that, prior to yielding, the Zr element and the intermediate (Zr-Zr, Cu-Al) and stronger (Zr-Al, Zr-Cu) bonds dominate the elastic deformation and strength, while the Cu and Al elements and the weaker Al-Al and Cu-Cu bonds contribute more to the highly localized shear transformation. The significant reconstruction, as signified by the cessation of bond-length increment and bond-angle decrement, of the intermediate and the stronger bonds triggers yielding of the material. After yielding, all the elements and bonds participate in the plastic deformation while the stronger bonds contribute more to the residual strength and the ultimate (fracture) strain. The results provide new insights into the atomic mechanisms underlying the mechanical behavior of multicomponent MGs, and may assist in the future design of MG compositions towards better combination of strength and deformability.more » « less
-
It is generally known that the incorporation of crystals in the glass matrix can enhance the ductility of metallic glasses (MGs), at the expense of reduced strength, and that the deformation of MGs, particularly during shear banding, can induce crystal formation/growth. Here, we show that these known trends for the interplay between crystals and deformation of MGs may hold true or become inverted depending on the size of the crystals relative to the shear bands. We performed molecular dynamics simulations of tensile tests on nanocrystal-bearing MGs. When the crystals are relatively small, they bolster the strength rather than the ductility of MGs, and the crystals within a shear band undergo redissolution as the shear band propagates. In contrast, larger crystals tend to enhance ductility at the cost of strength, and the crystal volume fraction increases during deformation. These insights offer a more comprehensive understanding of the intricate relationship between deformation and crystals/crystallization in MGs, useful for fine-tuning the structure and mechanical properties of both MGs and MG–crystal composites.more » « less
-
Joining of Cu-based dispersion-strengthened alloys to Ni-based superalloys has garnered increased attention for liquid rocket engine applications due to the high thermal conductivity of Cu-based alloys and high temperature tensile strength of Ni-based superalloys. However, such joints can suffer from cracking when joined via liquid state processes, leading to part failure. In this work, compositions of 15–95 wt.% GRCop42 are alloyed with Inconel 625 and characterized to better understand the root cause of cracking. Results indicate a lack of miscibility between Cu-deprived and Cu-rich liquids in compositions corresponding to 30–95 wt.% GRCop42. Two distinct morphologies are observed and explained by use of CALPHAD; Cu-deprived dendrites with Cu-rich interdendritic zones at 30–50 wt.% GRCop42 and Cu-deprived spheres surrounded by a Cu-rich matrix at 60–95 wt.% GRCop42. Phase analysis reveals brittle intermetallic phases precipitate in the 60–95 wt.% GRCop42 Cu-deprived region. Three cracking mechanisms are proposed herein that provide guidance on the avoidance of defects Ni-based superalloy to Cu-based dispersion strengthened alloy joints.more » « less
-
Titanium-based metallic glasses (TBMGs) are attracting broad interest due to their simultaneous light weight, superhigh strength, and specific strength, exceptional wear- and corrosion-resistance and biocompatibility, desirable for electronic, biomedical, and aerospace applications. However, the glass-forming ability (GFA) of TBMGs, except some containing significant amount of toxic (Be) or precious (Pd, Ag) elements, is disappointingly low, as manifested by a critical casting diameter (dc) not more than 6 mm, which significantly restricts their manufacturing and applications. Here, we report our discovery of a series of TBMGs in the (TiZrHf)x(CuNi)y(SnSi)z pseudo-ternary system. These alloys possess an exceptionally large dc, reaching up to 12 mm, doubling the current record for Be and precious-metal free TBMGs. Moreover, these alloys exhibit a low density (7.0–7.3 g/cm3), high fracture-strength (up to ∼2700 MPa), high specific fracture-strength (up to ∼370 N m g−1), and even good plasticity with a plastic strain of up to 9.4% upon compression. They also possess high activation energy for crystallization and high atomic packing efficiency, which provide an initial physical account for their exceptional GFA and manufacturability.more » « less
-
The recently discovered Cu46Zr33.5Hf13.5Al7 (at.%) bulk metallic glass (BMG) presents the highest glass-forming ability (GFA) among all known copper-based alloys, with a record-breaking critical casting thickness (or diameter) of 28.5 mm. At present, much remains to be explored about this new BMG that holds exceptional promise for engineering applications. Here, we report our study on the crystallization behavior of this new BMG, using isochronal and isothermal differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). With the calorimetric data, we determine the apparent activation energy of crystallization, the Avrami exponent, and the lower branch of the isothermal time–temperature–transformation (TTT) diagram. With XRD and TEM, we identify primary and secondary crystal phases utilizing samples crystallized to different degrees within the calorimeter. We also estimate the number density, nucleation rate, and growth rate of the primary crystals through TEM image analysis. Our results reveal that the crystallization in this BMG has a high activation energy of ≈360 kJ/mole and that the primary crystallization of this BMG produces a high number density (≈1021 m−3 at 475 °C) of slowly growing (growth rate < 0.5 nm/s at 475 °C) Cu10(Zr,Hf)7 nanocrystals dispersed in the glassy matrix, while the second crystallization event further produces a new phase, Cu(Zr,Hf)2. The results help us to understand the GFA and thermal stability of this new BMG and provide important guidance for its future engineering applications, including its usage as a precursor to glass–crystal composite or bulk nanocrystalline structures.more » « less
-
Understanding crystallization mechanisms in nano-sized metallic glasses (MGs) is important to the manufacturing and application of these new nanomaterials that possess a unique combination of structural and functional properties. Due to the two-dimensional projections and limited spatial and/or temporal resolutions in experiments, significant questions (e.g., whether nucleation takes place on the free surface or in a near-surface layer) regarding this subject remain under debate. Here, we address these outstanding questions using molecular dynamics simulations of crystallization in MG nanorods together with atomistic visualization and data analysis. We show that nucleation in the nano-sized MGs predominantly takes place on the surface by converting the high-energy liquid surface to a lower-energy crystal surface (the most close-packed atomic plane). This is true for all the nanorods with different diameters studied. On the other hand, the apparent growth mode (inward/radial, lateral or longitudinal) and the resulting grain structure are more dependent on the nanorod diameter. For a relatively big diameter of the nanorod, the overall growth rate does not differ much among the three directions and the resulting grains are approximately semispherical. For small diameters, grains appear to grow more in longitudinal direction and some grains may form relatively long single-crystal segments along the length of the nanorod. The reasons for the difference are discussed. The study provides direct atomistic insights into the crystallization mechanisms in nano-sized MGs, which can facilitate the manufacturing and application of these new advanced materials.more » « less
-
The linear rheological properties of supramolecular polymer networks formed by mixtures of two different bis-Pd(II) cross-linkers with poly(4-vinylpyridine) in dimethyl sulfoxide are examined. The changes in storage and loss moduli of the networks with mixed cross-linkers are compared to those of samples with a single type of cross-linkers. While the plateau moduli, and presumably network topology, of the networks remain equal regardless of the cross-link distribution, the relaxation time contributed by the faster cross-linkers is increased (by a factor of about 1.5 for the specific samples used in this work) by the presence of the slower cross-linkers, while the reverse influences are not significant. This effect can be explained by the fact that a certain fraction of the elastically effective strands cross-linked with fast cross-linkers is pinned on one end by slow cross-linkers, reducing by half the rate of fast chain relaxation. This effect is anticipated to be general for gels with two well-separated relaxation times.more » « less
An official website of the United States government
